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Abstract I Three classical particle dissolution rate expressions are
commonly used to interpret particle dissolution rate phenomena. Our
analysis shows that an assumption used in the derivation of the
traditional cube-root law may not be accurate under all conditions for
diffusion-controlled particle dissolution. Mathematical analysis shows
that the three classical particle dissolution rate expressions are
approximate solutions to a general diffusion layer model. The cube-
root law is most appropriate when particle size is much larger than
the diffusion layer thickness, the two-thirds-root expression applies
when the particle size is much smaller than the diffusion layer
thickness. The square-root expression is intermediate between these
two models. A general solution to the diffusion layer model for
monodispersed spherical particles dissolution was derived for sink
and nonsink conditions. Constant diffusion layer thickness was
assumed in the derivation. Simulated dissolution data showed that
the ratio between particle size and diffusion layer thickness (ag/h) is
an important factor in controlling the shape of particle dissolution
profiles. A new semiempirical general particle dissolution equation is
also discussed which encompasses the three classical particle
dissolution expressions. The success of the general equation in
explaining limitations of traditional particle dissolution expressions
demonstrates the usefulness of the general diffusion layer model.

Dissolution phenomena have been studied in a quantita-
tive manner for more than a century. The dissolution of
solid particles is more complicated than that of constant
surface area tablets because of surface area and/or shape
changes during dissolution. Though particle dissolution
models have been developed, discrepancies between theory
and experimental data are present. It has not been shown
whether these discrepancies are due to experimental
factors or limitations of the mathematical models.

Two steps are involved in solid particle dissolution: the
first step is the detachment of molecules from the solid
surface to form hydrated molecules at the solid—liquid
interface; the second step is the mass transport from this
interface to the bulk solution. Most dissolution processes
are controlled by the second step which is diffusion—
convection-controlled. The basic diffusion-controlled model
for solid dissolution was developed by Noyes and Whitney?
and later modified by Nernst? and Brunner.3 This model
assumes that rapid equilibrium (i.e., saturation) is achieved
at the solid—liquid interface and then diffusion occurs
across a thin layer of solution, called the diffusion layer,
into the bulk solution. Diffusion across this diffusion layer
is rate-controlling in most cases, which effectively converts
the heterogeneous process of dissolution to a homogeneous
process of liquid-phase diffusion. Nernst and Brunner’s
concept of a diffusion layer being a stagnant or unstirred
layer of liquid adhering to the solid surface is naive but
allows complex dissolution processes to be analyzed in a
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tractable fashion. However, as pointed out by King,* this
layer need not be stagnant and can be a hydrodynamic
boundary which has a velocity as well as a concentration
gradient.

Three diffusion-controlled models have been reported for
single spherical particle dissolution under sink conditions,
as shown below:
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where w is particle weight at time t, wy is initial particle
weight, ki3, K12, and ks are composite rate constants, p is
the density of the particle, D is diffusion coefficient, Cs is
solubility, h is diffusion layer thickness, and k' is a
constant. Equation 1 was derived by Hixson and Crowell®
and is known as the “cube-root law”. Equation 2 is the
semiempirical expression reported by Niebergall et al.6 and
has a square-root dependency on weight. Equation 3 was
derived by Higuchi and Hiestand” and has a two-thirds-
root dependency on weight. Each of the above equations
gives satisfactory fits to certain experimental dissolution
data.’8° These three expressions are still the basis for
particle dissolution theories in contemporary dissolution
testing.1° However, the choice of the model to fit experi-
mental data is still somewhat arbitrary. Though they
appear different in form, the three equations are difficult
to distinguish when applied to experimental data. A
particular dissolution profile can often be fitted by at least
two of these equations almost equally well.1? Thus, it seems
that dissolution behavior of simple spherical particles is
still not theoretically well defined.

Among the three equations, the most commonly used is
the “cube-root law”. The cube-root law was first derived
by assuming that dissolution rate is proportional to particle
surface area. Though Hixson and Crowell did not specifi-
cally use the diffusion layer model to derive their equation,
the cube-root law can also be derived from a simple
diffusion layer model. Our further analysis shows that the
cube-root law is only an approximate solution to the
diffusion layer model, because an assumption used may not
be accurate under all conditions for diffusion-controlled
particle dissolution.

Below are dissolution rate expressions for the diffusion
layer model:

(eq 3)
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Journal of Pharmaceutical Sciences / 731
Vol. 88, No. 7, July 1999



%

Ry
S

Figure 1—Steady-state concentration gradient around a planar surface.
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Figure 2—Pseudo-steady-state concentration gradient around a spherical
particle (radius = a).

where dQ/dt is the rate of dissolution, A is particle surface
area, h is the thickness of the diffusion layer, Cy is bulk
solution concentration, r is the distance from the center of
the particle, and a is particle radius. Equation 4 is exact
for planar surface dissolution under sink conditions, be-
cause the concentration gradient in the diffusion layer is
linear at steady-state (Figure 1). However, for a curved
surface, eq 4 is not accurate because the concentration
gradient around a spherical particle is not linear under
pseudo-steady-state conditions (Figure 2). Particle dissolu-
tion rate expressions based on eq 4 will not give accurate
solutions to the diffusion layer model for spherical particles.
For more accurate results, the derivation should start from
eq 5 which is Fick’s first law expression for spherical
geometry.

For particle dissolution, changing bulk solution concen-
tration complicates the mathematical analysis. Most re-
searchers use sink conditions to make the treatment of
experimental data easier. The three traditional particle
dissolution expressions are such examples, which is what
we emphasize here. A general (and more exact) solution
to the diffusion layer model for spherical particle dissolu-
tion under sink conditions will be derived, and the relation-
ship between the general solution and the classical expres-
sions will be discussed. A general solution for spherical
particle dissolution under nonsink conditions is also in-
cluded and briefly discussed. Understanding the limitations
of the three classical particle dissolution expressions will
make it easier to use them appropriately. The availability
of the general solution will provide a sound basis for
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determining whether diffusion layer thickness is dependent
upon particle size, which has been a point of discus-
sion.810.12-14 It glso provides a sound basis for the inves-
tigation of polydispersity effects on particle dissolution.

Theory

The diffusion layer model for single spherical particle
dissolution under sink conditions is based on the following
assumptions:

(a) The particle is spherical and dissolves isotropically.

(b) The particle is in a well-stirred solution and there
exists a boundary layer around the particle of constant
thickness (h).

(c) During dissolution, a pseudo-steady-state is estab-
lished with only minimal solid dissolution, after which the
overall mass transport rates across the inner and outer
spherical surfaces (at r = a and a + h) of the diffusion layer
are assumed to be equal.l®

(d) The concentration at the interface between the solid
and the solution is saturated (Cs), and solubility is inde-
pendent of particle size.

(e) The bulk solution concentration (Cp) is assumed to
be zero, and the diffusion coefficient (D) is a constant
throughout the diffusion layer.

Since the concentration gradient around a spherical
particle is not linear at pseudo-steady-state, it is a function
of distance from the center of the particle. The function
G(R) can be defined as the concentration gradient at a
distance R from the center of the particle and is given by:

_dC
SR =%
r=R

With this definition, eq 5 becomes:

%—? — _DAG(a) (eq 6)

The surface area of a sphere is 4xr? and applying the
pseudo-steady-state assumption c gives:
47a°G(a) = 4nr’G(r) as<r<a+h (eq7)

and

a2
G(n) = FG(a) (eq 8)

Using assumptions d and e, the total concentration
difference across the diffusion layer is Cs, which leads to:

[H — G(rydr = Cq (eq 9)

a

Substituting eq 8 into eq 9 gives:

+h  a?
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Integrating eq 10 gives:
- _c. [ty l
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Substituting eq 11 into eq 6 gives:
daQ _ 1,1
2= DAC, (a + h) (eq 12)



Using 4za? for area (A) in eq 12 gives:

1

dQ _ 4nachS(a%I + —) (eq 13)

dt h

Considering the change of particle radius during dis-
solution, the mass balance expression for a dissolving
spherical particle is:

aQ _ 4 2,92
T 4za‘p at (eq 14)
where p is the solid density. Equation 14 is independent
from eq 13. Equating egs 13 and 14 gives:

47a°DCq (a%l + %) = —47a?p i—i‘ (eq 15)
Rearranging eq 15 gives:
DCs 4t — (—1 +_N )da (eq 16)
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The integral form of eq 16 is:
fot%dtzl/:(—l—ka?_h)da (eq 17)
Integrating both sides of eq 17 gives:
DCq a,
p—htzao—a—hlntha (eq 18)

where ag is the initial particle radius.

Equation 18 is the general solution (in terms of particle
radius) of the diffusion layer model for single spherical
particle dissolution under sink conditions. The relationship
between particle weight and particle radius is given by:

w= % na’ p (eq 19)

where w is particle weight and wy is initial particle weight.
Substituting eq 19 into eq 18 gives an expression for the
change of particle weight with time:
3W0 1/3
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For N monodispersed particles, the total weight (W) of
particles is Nw. Using this expression in eq 20 gives eq 21
which describes the dissolution process for N monodis-
persed particles under sink conditions with total initial

weight, W,.
3w, )1/3
h+ (4N7[p

3W \1/3
(4an)
(eq 21)
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Under nonsink conditions, the general dissolution equa-
tion can be derived in a similar manner (see appendix I1)
and is summarized below.

For N monodispersed spherical particles, the general
solution in terms of particle size (a) with time is:
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where a, f and y are constants: a = 4/3mpN, f§ = CsV —

4sma3oN, y = (Bla)t3. The above general equation is not

applicable when = 0 which will lead to an indeterminate

condition (i.e., division by zero). Such a situation arises

when the initial particle weight (Wo) equals the amount

necessary to saturate the solution (i.e., Wy = CgV). The
equation for this condition is:

Y
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(eq 23)

Results and Discussion

1. Three Classical Particle Dissolution Rate Ex-
pressions are Special Cases of the General Solution
under Sink Conditions—Two special cases of eq 18 are
as follows:

(2) When ap > h and a> h, eq 18 becomes (see appendix

1):
(eq 24)

This leads to the cube-root expression.®
(b) When ap < h, eq 18 becomes (see appendix I):

2DCq
o

t~a—a’ (eq 25)

This leads to the two-thirds-root expression.”

It is clear that both the cube-root law and the two-thirds-
root expression are approximate solutions to the diffusion
layer model at opposite extremes of particle size. Theoreti-
cally, the cube-root law is accurate only when the particle
size is much larger than the thickness of the diffusion layer,
and the two-thirds-root expression is accurate when the
particle size is much smaller than the thickness of the
diffusion layer.1® The square-root expression is intermedi-
ary between these two limits. It is not surprising that it
fits some particle dissolution profiles, but may not describe
such profiles exactly. When particle size is comparable to
the thickness of the diffusion layer, the general equation
provides a more accurate mathematical description.

The above conclusion can also be reached in another way.
The concentration gradient at the solid—liquid interface
(eq 11) can be considered to be two parts: the particle
radius term (Cs/a) and diffusion layer thickness term (Cs/
h). When particle size is much larger than diffusion layer
thickness (a > h), the particle radius term can be omitted,
we obtain dQ/dt ~ DACs/h which will lead to the cube-root
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law. On the other hand, when the particle size is much
smaller than diffusion layer thickness (a < h), the diffusion
layer thickness term can be omitted and we obtain dQ/dt
~ DACg/a which leads to the two-thirds-root expression.
It is obvious that both of these expressions underestimate
the concentration gradient at the solid—liquid interface.
2. The Ratio between Particle Size and Diffusion
Layer Thickness (ag/h) in Controlling the Shape of a
Particle Dissolution Profile—Rearranging eq 18 gives:

= ﬂ[a0 —a—hlin(h+ay) +hlinth+a)] (eq26)
DCq

T can be defined as the time needed for complete
dissolution (i.e., at a = 0) of a particle as shown below:

h
= [')LCS[a0 —hlIn(h + ag) + h In(h)]

(eq 27)
Dividing both sides of eq 26 by eq 27 gives:
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Rearranging eq 28 gives:
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Further rearrangement of eq 29 gives:
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Since a/ap = (w/wg)3, eq 31 becomes:
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Equation 32 is a dimensionless equation for single
particle dissolution under sink conditions where t/T and
w/wg can be viewed as two variables which range from 0
to 1. Plots of w/wg vs t/T give dissolution profiles which
are independent of solid and dissolution medium used, but
are governed by ag/h. Theoretical comparisons between the
general solution and classical particle dissolution expres-
sions can be made by generating simulated particle dis-
solution data using eq 32 and comparing the simulated
data with the traditional expressions.

If a spherical particle dissolution profile follows one of
the three traditional particle dissolution expressions, one
of the (W/wg)¥" vs time plots (n = 3, 2, or 3/2) should be
linear with a slope of 1. By simulating dissolution profiles
using the normalized general equation (eq 32) and plotting
the resulting dissolution profiles with these three ordinate
axis transformations (Figure 3), it can be seen how well
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the three approximate particle dissolution rate expressions
(egs 1—3) apply. The dissolution data were simulated with
different values of ag/h. It can be seen from Figure 3 that
there are deviations from linearity for some ag/h ratios no
matter what ordinate transformation is used.

It should be pointed out that linearity of such plots is
not a sensitive criterion to test whether the dissolution
profile is consistent with a certain rate expression. Usually
dissolution profiles can be reasonably linear on any of the
three transformed axes up to ~80% dissolved (i.e., [w/wg]*"
= 0.585, 0.447, 0.342 for n = 3, 2, 3/2, respectively).

3. A New Semiempirical Equation for Single Spheri-
cal Particle Dissolution under Sink Conditions—Since
there are functional simlarities in the three classical
particle dissolution rate expressions, a new semiempirical
equation (eq 33) is proposed which incorporates the three
classical expressions but the exponent, n, is not limited to
values 3, 2, and 3/2. The proportionality constant ky, is a
constant with units of mass!/time.

i _ ., ln _
W =W Kynt

(eq 33)

Single particle dissolution profiles generated from the
general equation (eq 32) can be fitted by eq 33 where n
ranges from 3/2 to 3 but does not have to be a specific value
(i.e., 3/2, 2, or 3). If w is normalized by wp and t is
normalized by T (T = Wé’”/kl/n), a dimensionless expres-
sion is obtained:

w t\n
o (1 T) (eq 34)

The two parameters, T and n, can be obtained by fitting
eq 34 to dissolution data (w/wg vs t). Simulation studies
were carried out at six representative ao/h ratios. For
convenience, the w/w, values were generated by keeping
alag = 1.0, 0.95, 0.90, ..., 0.05, 0 for each ag/h ratio. The
corresponding times (t) for these w/wg values were then
calculated with eq 32. The values of T and n were obtained
by fitting eq 34 to the simulated data and the results are
given in Table 1. It can be seen that n depends on ag/h
with the smaller ratio giving a smaller value of n. The other
fitted parameter, T, deviates slightly from its theoretical
value (1.0) for all ag/h ratios. Theoretically, it is possible
to determine ag/h from the fitted value of n. However, small
variations in n can lead to dramatic changes in calculated
ag/h values making it difficult to obtain an accurate
estimation of ag/h from n.

4. Dependence of Surface-Specific Dissolution Rate
upon Particle Size under Sink Conditions—According
to Fick’s first law,

— _poc
J=-Dy;

(eq 35)

J is the diffusional flux and is defined as the amount of
substance passing per unit time normal to unit surface
area. When applied to dissolution, it may also be defined
as the surface-specific dissolution rate. Substituting eq 11
into eq 35 gives:

J=DCq (% + i) (eq 36)

Equation 36 demonstrates that the surface-specific dis-
solution rate depends on particle size, with smaller par-
ticles having higher surface-specific dissolution rates (Fig-
ure 4). Bisrat et al.1® and Anderberg et al.*17 reported a
dependence of surface-specific dissolution rates upon par-
ticle size. Their results showed the same trend seen in
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Table 1—Fitted Parameters (n, T) for Simulated Data (eq 32) Fitted
by eq 34

agh n T r2
1000 3.00 1.004 1.00000
20 2.80 1.051 1.00000
5 2.43 1.059 0.99999
2 2.09 1.044 0.99998
0.5 1.71 1.016 0.99999
0.01 1.51 1.000 1.00000

Figure 4. The surface-specific dissolution rate increased
(after correcting for solubility dependence on particle size)
with decreasing particle size. This increase was especially
pronounced for particle sizes below ~5 um.

Harriott similarly reported on mass transfer to particles
(i.e., particle growth) for a much wider range of particle
sizes.’® He found that the mass transfer coefficient, kc (cm/
s), was almost independent of particle size for particles
larger than 200 um, but was particle size dependent for
smaller particles. Since diffusion layer thicknesses usually
range from 10 to 200 um, it seems that for particles smaller
than 200 um, particle size effects will be significant on
particle dissolution.

Equation 36 can be rewritten in a more general form:

1
rC
where r; is the radius of curvature of a dissolving surface
and is positive (r, > 0) for a convex surface. For flat surfaces

J= DCS(% + (eq 37)
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Figure 4—Relative surface-specific dissolution rate dependence (J, J = 1 for

a flat surface) upon particle radius (a) normalized with diffusion layer thickness
(h) using eq 36.

0.0 0.5 3.0

(rc — ), dissolution rate is directly proportional to surface
area. However, this simple relationship does not hold for
a curved surface. Convex surfaces have larger surface-
specific dissolution rates than a flat surface. Hixson and
Crowell derived the cube-root law by assuming dissolution
rate is proportional to particle surface area. From the above
analysis we can see that this assumption is not justified
when r¢ is comparable to or smaller than h.

5. Particle Dissolution under Nonsink Conditions—
The general equation for spherical particle dissolution
under nonsink conditions (eq 22) is algebrically complex
but can be mathematically simulated. It can also be
converted to particle weight (W) which will lead to an
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Figure 5—Comparison of particle dissolution under sink conditions (a) and
three degrees of saturation: (b) 10%; (c) 50%; (d) 100%.

equally unwieldy equation which we do not show here. The
main advantage of such expressions is for dissolution
systems in which the drug is quite insoluble where sink
conditions are difficult or impossible to maintain.

A simulation was done to compare particle dissolution
under sink conditions and different degrees of nonsink
conditions using eqs 21—23. Three levels of nonsink condi-
tions were chosen: initial particle weight equal to 10%,
50%, and 100% of the amount necessary to saturate the
solution. The initial particle radius was arbitrarily chosen
to be 10 times as large as the diffusion layer thickness with
ap =200 um, h =20 um, D = 1.1 x 107 cm?/s, Cs = 3.4
mg/mL, p = 1.4 g/cm3. A comparison of the dissolution
profiles is shown in Figure 5. It can be seen that assuming
sink conditions provides good results when initial particle
weight is less than 10% of the weight for saturation.

Conclusions

The general solution of the diffusion layer model applied
to spherical particle dissolution is derived. The three
classical particle dissolution rate expressions, including the
cube-root law, are special cases of the general solution to
particle dissolution under sink conditions with constant
diffusion layer thickness. The ratio between particle radius
and diffusion layer thickness (a¢/h) is an important factor
in controlling the shape of the dissolution profile. It also
controls which classical model can fit a dissolution profile
better than the other two models. It is necessary to apply
this general equation to typical monodispersed drug powder
dissolution data to fit the entire profile. This general
equation will be applied to literature and experimental data
in future publications.

Nomenclature

a particle radius

ag initial particle radius

A surface area

C concentration

Cp concentration in the bulk solution

Cs solubility

D diffusion coefficient

G(R) concentration gradient at distance R from the
center of the particle

h diffusion layer thickness

J surface-specific dissolution rate, i.e., dissolution
rate on unit surface area

K13 single particle dissolution constant in the cube-
root law
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K1 single particle dissolution constant in the square-
root expression

Kosa single particle dissolution constant in the two-
thirds-root expression

Kn dissolution rate constant

n dissolution rate order

N total number of particles

r distance from the center of a particle

Ie radius of curvature

t time

T time needed for complete particle dissolution

\% solution volume

w individual particle weight

Wo initial individual particle weight

w total weight of monodispersed particles

Wo total initial weight of monodispersed particles

I solid density of the particle

Appendix |

The cube-root law and the two-thirds-root expression can
be derived from eq 18 using a Taylor series expansion (eq
38).

2 3

=y X X _X
In(1+x)=x 2—1—3 7

~

—1<x=1

(eq 38)

1. Derivation of the Cube-Root Law from the
General Equation (eq 18). Equation 18 can be trans-
formed to:

DCs = +hinl1+
p—ht—ao—a n

a—a, 39
h+ a, (eq 39)

To derive the Hixson—Crowell cube-root expression, it
is necessary to assume that h < ap and h < a, so that |(a
— ap)/(h + ap)| < 1. Applying the Taylor series expansion
to eq 39 leads to:
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Equation 40 can be written as eq 41,

=@ —al-P) (eq 41)

s
eh
For the case where a = 0.5a,, we have (ap — a)/(ag + h)
< 3, s0,

h 1@ —a) 1[a,—al?
P= 1+= + +
a,+h 2(a, +h) (ao+h)
1{a —a\3
4a0+h ......
h 1 1 1/1\2  1/1\3
<a0+h1+§X§+§(§) +Z(§) ...... ]
h 1 1, 1/1\2  1/1\3
< h1+§X§+§(§) +§(§) ...... ]
3 h
=§a0+h (eq 42)

Since ap > h, we have P < 1, so eq 41 can be ap-
proximated by:

DCq
p_htNaO a

(eq 24)
From eq 24, the cube-root law can be derived.
2. Derivation of Two-Thirds-Root Expression from
the General Equation (eq 18). Equation 18 can be
transformed to:

DCq B hl(
p_ht dg—a-— n

h+ a, h )_
h “h+al

a,—a-— h[ln(l + %) — In(l + %)] (eq 43)

In the case of the Higuchi—Hiestand two-thirds-root
expression, it is necessary to assume that h > ag which
leads to ap/h < 1. Applying the Taylor series expansion to
eq 43 gives:

DCq Ch) 1("510)2 l(ao)?’
oh (T2 h[F 2\n) Ta\n)
a , 1/a\z 1/a\3
E + E(H) §(H) ...... ] (eq 44)

Since ag/h < 1, eq 44 can be approximated by:

DCq =l 1("510)2 a , 1/az|
—rtra—a-hit- o - B o) ] =
2 2
1(ap—a)
> h (eq 45)
Rearranging eq 45 gives
2DC
pStNaS—a2 (eq 25)

From eq 25 the two-thirds-root expression of Higuchi and
Hiestand can be derived.

Appendix Il

The general solution for single spherical particle dis-
solution under nonsink conditions can also be derived in a

similar manner as under sink conditions. If the initial bulk
concentration is 0 and the solution volume (V) is kept
constant, the bulk concentration (Cp) can be described by
the following equation for single spherical particle dissolu-
tion:

4
37(@s — a’)p

C,= v

(eq 46)

Under nonsink conditions, eqs 5—8 are still valid, while
eq 10 should be modified to give:

+h  a?
- FG(a) dr=Cs—C, (eq 47)
Integrating eq 47 gives:
_ 1,1
G(a) = {5+ {)(Cs ~ € (eq 48)
Substituting eq 48 into eq 6 gives:
4 — 4na DE+h)Cs—C) (ead9)

Equating eq 14 and eq 49 and rearranging gives:

D _ a

——dt=—————da eq 50
oh @ mcs o (¢a50)
The integral form of eq 50 is:
t D a
-——dt= [ ——F—F——d 51
Jo == fumric, — oy @ €ISy
Substituting eq 46 into eq 51 gives:
a a
I p—h dt= [ 2 7 da
(a+ h)( 3V:rao,o + Vi ra p)
(eq 52)

Integrating eq 52 will lead to a relationship between
particle radius and time. The integration is complex and
only the final form is given below:

D
phV r{X‘f‘Y“FZ} (eq 22)
ath h, aa®+p
X=hln - =1
aut+th 3 qad+p
Cr1, @@+t ay)’
Y="1{>1n L
72 (v +a)(ead + p)

V3tan™ (2&173_2) —V3tan™? (261;5_ yﬂ
Y Y

(Ota +Al +ag)’

z=21%
312"+ ay (ca3+p)
_ 285~y
\/§ l(za ) 3 l( / )
tan N +V/3tan” Va7

Ineq 22, a, f and y are constants: o = 4mp/3, f = CsV
— 47ado/3, y = (Bla)Y3. For N monodispersed particles, eq
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22 is essentially the same except that C, = [4n(a§ -
a®)pN/3]/V, correspondingly, the values of o and 3 become
o = 4a7pN, B = CsV — “3madpN. Weight undissolved (w)
expressions can be obtained by substituting a = (3w/4mp)/?
in eq 22.

A special case arises when the initial particle weight (wo)
exactly equals the amount necessary to saturate the
solution. In this case, the above equation does not work (3
= 0) and a special equation needs to be derived where:

Cs= 3V naop (eq 53)
Thus, eq 52 becomes:
= D= a;da (eq 54)
° ph 0 A %@+ h)
3V
Integrating both sides of eq 54 gives:
4Dz, _ 1 1 1, a@+h
——t==—-—=—4+=In—— 55
v 'Ta hMa@rn (4%

Substituting for V using eq 53 into the left-hand side of
eq 55 gives:

DCq 1.1 a(@o + h)

In———— (eq 56)

=1_
a h ag(a + h)

3
aop

For N monodispersed particles, Cs = 4nagpN/3V and

the final equation becomes:

DCq
agpN

i 1 na(ao h)
h ag(a+ h)

1
t—a (eq 23)
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